Graphite dust is an important issue for the operation and maintenance of high-temperature gas-cooled reactor (HTGR), because the transport of fission product (FP) is coupled closely with graphite dusts. For instance, vapor phase FP could condense as flowing through the steam generator (SG) and deposit on the surface of graphite dusts that are either air-borne or already deposited on SG tubes. In water ingress or loss-of-coolant accidents, these dusts may re-suspend and contribute to the source term. Despite the importance of graphite dusts in HTGRs, the transport and deposition of dust particle are far from being fully understood, neither particle-fluid nor particle-wall interactions. In this work we present a numerical study on the particle transport through upper 5 layers of SG tubes. Particularly, the particle impaction process is simulated by Finite Element Method (FEM) with adhesion and dissipation specially accounted. The FEM simulation predicts the critical adhesion velocity and restitution coefficient when rebound occurs. Then we substitute the particle impaction model into Eulerian-Lagrangian simulation of flow field and extract the deposition rate statistically. The result shows that for small particles (< 5 μm), the deposition rate is controlled by the collision rate, which is mainly determined by the interaction between turbulence and thermophoresis. The particle-vortex interaction is essentially important for the distribution of particles near wall and thus influences the deposition rate. For large particles the deposition rate is more affected by the sticking efficiency, which is simultaneously controlled by both the critical adhesion velocity and normal impaction velocity. Therefore, the deposition rate first increases then decreases with particle size and reaches maximum at about 5 μm.

This content is only available via PDF.
You do not currently have access to this content.