Nanofluid has been attracted great attention since it was proposed as a preeminent working fluid. Flow boiling is familiar in heat transfer system and the critical heat flux is a key parameter for the design of thermal hydraulic. In present work, the critical heat flux of nanofluid flow boiling is experimentally investigated in a vertical tube with the consideration of outlet pressure, mass flux, inlet subcooling, heating length and diameter. The results indicate that the critical heat flux of nanofluid flow boiling is enhanced compared with base fluid and the increasing radio is increased with increasing the mass flux, diameter and pressure, and with decreasing the heating length. In addition, the inlet subcooling and concentrations (0.1vol.%, 0.5vol.%) have almost no significant influence. Furthermore, a new mechanism for the enhancement of nanofluid flow boiling critical heat flux was proposed by the SEM images of nanopariticle deposition on the heating surface.

This content is only available via PDF.
You do not currently have access to this content.