Rapid thermal elevation in nuclear reactor is an important factor for nuclear safety. It is indispensable to develop a three-dimensional nuclear thermal transient analysis code and confirm its validity in order to accurately evaluate the effectiveness of the running nuclear safety measures when heating power of reactor core rapidly rises. However, the heat transfer characteristics such as reactivity feedback characteristics due to moderator density and the technical knowledge explaining the uncertainty are insufficient. In particular, the cross propagation behavior of vapor bubble (void) in cross section of fuel assembly is not grasped.

This study evaluates the cross propagation void behavior in a simulated fuel assembly at time of rapid heat generation with a thermal hydraulic test loop including a 5 × 5 rod bundle having the heat generation profile in the flow cross sectional direction. In this paper, the branching heat output condition of transient cross propagation was investigated from visualization of high speed video camera and void fraction measurement by wire mesh sensor with the inlet flow rate 0.3m/s and the inlet coolant temperature 40°C, which are based on the transient safety analysis condition. In addition, we applied the particle imaging velocimetry (PIV) technique to measure liquid-phase velocity profile of the coolant in the transient cross flow and experimentally clarified the relationship with the cross flow.

This content is only available via PDF.
You do not currently have access to this content.