An ongoing Sandia National Laboratories’ (SNL) research study is evaluating a potential design of an injectable sacrificial material (SM) system that could contain and cool corium ejected from a reactor vessel lower head failure during a potential severe accident involving melting fuel at a commercial light water nuclear reactor (LWR). An injectable system could be installed at any existing LWR, without significant modification to the cavity or to the drywell pedestal region of the plant. The conceptual design under consideration is a passive system. The SM is being optimized to quickly cool the corium mixture while creating gas to form porosity in the solid, such that subsequent water flooding can penetrate the structure and provide additional cooling. The SM would form a barrier and limit corium-concrete interactions.

This three-year project takes a joint experimental and computational approach. In this paper, we will first discuss the success of our small-scale experiments conducted on the interactions between the surrogate corium material (SCM) and SM, used to evaluate the injectable concept. A larger experimental study, currently underway, will further validate the injectable concept, with a focus on accurately measuring interactions. This paper details the modeling study and its progress, including modeling the experiments on a surrogate system and extending the model to bench-scale corium flow from validation experiments. The project’s modeling studies will use the SNL engineering code suite SIERRA Mechanics to understand the interaction of injectable SM and molten corium and predict corium spreading. Spreading is modeled using a level set method to track the front in conjunction with a pressure-stabilized finite element method on the fully three-dimensional mass, momentum, and energy conservation equations. Using this diffuse-interface method, the corium spreading front can be tracked and an appropriate pseudo-solidification viscosity models can be implemented to accurately model the corium spreading physics. Finally, an injectable SM delivery system is discussed along with its deployment to the six-common commercial LWR designs currently operating in the United States.

At the end of this project, a simplified model based on SIERRA simulations will be developed for implementation into MELCOR, a severe reactor analysis code, developed at SNL for the U.S. Nuclear Regulatory Commission. This will allow us to demonstrate the ability of the injectable SM system to mitigate the ex-vessel corium spreading, provide containment and negate the release of radionuclides.

This content is only available via PDF.
You do not currently have access to this content.