The parallel compact heat exchangers have been widely applied in the various fields such as heat exchangers in chemical engineering, the solar collector, fuel cells and the passive removal heat exchanger in passive containment cooling system (PCCS), etc. The heat exchangers in the PCCS removes out the heat brought by the steam coming out from the broken reactor or primary cooling system. Therefore, the performance of the passive containment cooling system heat exchanger (PCCS HX) will greatly influence the safety and integrity of the containment. In previous investigations on the parallel compact heat exchangers, attentions are focused on the pressure distribution and flow distribution in the heat exchangers. A bad flow distribution in the heat exchanger will reduce the heat performance. More seriously, the coolant in some tubes may boils and the tubes will be overheated, resulting in explosion of tubes. Therefore, the characteristic of pressure distribution and the flow distribution should be investigated for a uniform flow distribution.

In the past studies of the compact heat exchangers, the numbers of tube are almost under 72 which is relatively small, while the number of tubes PCCS HX is usually over than 100. And the pressure distribution in compact heat exchangers is assumed that the pressure recovery plays a leading role.

However, the more numbers of tube will bring more flow maldistribution, if the geometry design is selected inappropriately. The reverse flow may occur in the heat exchanger, which means that in some tubes, the coolant flows from the tube outlet to the inlet. This phenomenon of reverse flow have never been mentioned in previous studies. The occurrence of the reverse flow will significantly decrease the performance of the heat exchanger and cause a bad influence on the safety of the containment.

In the PCCS, the Z-type heat exchanger is one of the choice of PCCS HX (heat exchanger) design. Therefore, the present study focus on the characteristic of reverse flow phenomenon in Z-type heat exchangers. The pressure distribution and the flow distribution have been separately investigated deeply. The conclusion of this study will provide a guide to the geometry design of the PCCS HX with large number of tubes.

This content is only available via PDF.
You do not currently have access to this content.