Differing from the adoption of helium as working fluid of closed Brayton cycle (CBC) for terrestrial high temperature gas cooled reactor (HTGR) power plants, helium-xenon mixture with a proper molar weight was recommended as working fluid for space nuclear reactor power with CBC conversion. It is essential to figure out how the component of helium-xenon mixture affects the net system efficiency, in order to provide reference for the selection of appropriate cycle working fluid. After a discussion of the physical properties of different helium-xenon mixtures, the related physical properties are studied to analyze their affection on the key parameters of CBC, including adiabatic coefficient, recuperator effectiveness and normalized pressure loss coefficient. Then the comprehensive thermodynamics of CBC net system efficiency is studied in detail considering different helium-xenon mixtures. The physical properties study reveals that at 0.7 MPa and 400 K, the adiabatic coefficient of helium-xenon mixture increases with increased molar weight, from 0.400 (pure helium) to 0.414 (pure xenon), while recuperator effectiveness firstly increases and then decreases with the increase of molar weight, and the normalized pressure loss coefficient increases monotonically with molar weight increases. The thermodynamic analysis results show that the adiabatic coefficient has less effect on the net system efficiency, while the net system efficiency increases with increased recuperator effectiveness, and the net system efficiency decreases with normalized pressure loss coefficient increases. Finally, the mixture of helium-8.6% xenon was adopted as working fluid, instead of pure helium, for ensuring less turbine mechanicals (turbine and compressor) stages, and resulting maximum recuperator effectiveness. At the given cold / hot side temperature of 400 / 1300 K, the net system efficiency can reach 29.18% theoretically.
Skip Nav Destination
2018 26th International Conference on Nuclear Engineering
July 22–26, 2018
London, England
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5147-0
PROCEEDINGS PAPER
The Characteristics Study of Helium-Xenon Mixture in Closed Brayton Cycle for Space Nuclear Reactor Power
Xie Yang
Tsinghua University, Beijing, China
Lei Shi
Tsinghua University, Beijing, China
Paper No:
ICONE26-82220, V005T05A025; 6 pages
Published Online:
October 24, 2018
Citation
Yang, X, & Shi, L. "The Characteristics Study of Helium-Xenon Mixture in Closed Brayton Cycle for Space Nuclear Reactor Power." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues. London, England. July 22–26, 2018. V005T05A025. ASME. https://doi.org/10.1115/ICONE26-82220
Download citation file:
70
Views
Related Proceedings Papers
Related Articles
Ways to Increase Efficiency of the High-Temperature Gas Reactor Coupled With the Gas-Turbine Power Conversion Unit
J. Eng. Gas Turbines Power (September,2009)
Heat Exchanger Design Considerations for Gas Turbine HTGR Power Plant
J. Eng. Power (April,1977)
On the Performance of Very High Temperature Reactor Plants With Direct and Indirect Closed Brayton Cycles
J. Eng. Gas Turbines Power (March,2010)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential