The Chinese Fusion Engineering Testing Reactor (CFETR) will be operated in two phases. Phase I focuses on fusion power Pfusion = 200 MW, fusion power gain Qplasma = 1 – 5, tritium breeding ratio TBR>1.0, neutron DPA requirement ∼10 dpa. Phase II emphasizes DEMO validation, which means Qplasma > 10, Pfusion > 1 GW, e.g. 1.5 GW. It is required that one blanket design can cover the operation of both phases of CFETR from the viewpoint of saving construction cost and reducing waste inventory. However, fusion power in Phase-II is 4–6.5 times larger than those in Phase-I, and this also causes the great challenge facing the thermal-hydraulics design of the blanket. A new version of water cooled ceramic breeder (WCCB) blanket for both phases is proposed for CFETR, based on a trade-off considering on TBR, release tritium temperature in breeder zone, and removal heat capability of coolant. This design continues to employ the mixed breeder of Li2TiO3 and Be12Ti as tritium breeder and primary neutron multiplier, and a few Be as supplement of multiplying neutrons, Reduced Activation Ferritic/Martensitic steel as structural material, tungsten as plasma facing material. Pressurized water of 15.5 MPa is chosen as coolant with 285 °C inlet/325 °C outlet temperature. Main design change is that it employs two independent coolant systems in the blanket cooling components. For Phase I, one coolant system is only used and hoped to improve the breeder zone temperature higher than tritium release temperature. For Phase II, all of two coolant systems are put into using to ensure the material temperature less than the allowable limit. In this paper, the WCCB blanket design work is presented and its feasibility is investigated from the aspect of neutronics and thermo-hydraulics.

This content is only available via PDF.
You do not currently have access to this content.