In the ESNII+ EU FP7 project, a reactor physics benchmark aiming at the whole core calculation with the reflectors and detailed description of the structural elements was specified. This benchmark is based on the 2009 CEA concept of the ALLEGRO core. Fixed nominal technological data at nominal reactor state (geometry, composition) were prescribed which had to be modified in specified calculation branches according to different types of the thermal expansion and control rod positions. The parameters of the point kinetic model to be applied in a system thermal hydraulic code had to be determined this way. Static mechanical models of the expansion processes were specified by the benchmark.

The goal of the calculation exercise was to verify the reactor physics codes, namely to get information about the modelling uncertainties and — after — their influence on the calculated results of the safety analyses. The obtained deviations between the participants are characterizing the user effects, the modelling uncertainties and the influence of the nuclear data differences all, without the possibility of their separation because of the complexity of the benchmark problem. A conclusion could be drawn that a step by step procedure starting from simple problems (homogenous material, Wigner-Seitz cell or subassembly in asymptotic approach) is necessary if we wish to identify the reasons of the deviations. For the Doppler effect, a decision was made in this direction already in the ESNII+ project where an infinite regular lattice problem without any leakage had to be solved. This approach of the simplicity is followed by the present benchmarks (one rod and one assembly), but extending the simple benchmarks with burnup calculations and taking into account leakage in asymptotic approximation by neglecting the complicated processes necessary in the reflector regions.

This content is only available via PDF.
You do not currently have access to this content.