Tritium is indispensable to the fusion reactor engineering, and it must be seriously defended because of its radioactivity and permeability. The method of catalytic oxidation and absorption is the most widely used process for tritium cleanup so far, in which detritiation catalyst is of great importance. The poor stability caused by the agglomeration of noble metal limits the life of detritiation catalysts. Here, Anti–Ostwald Ripening is used to prepare single-atom detritiation catalysts S-Pt/Ce0.7Zr0.3O2 for tritium (HT, DT and T2) oxidation. Single-atom dispersed Pt ensures the catalytic activity and decreased the economic cost. The strong metal-support interaction (SMSI) keeps Pt from aggregating, thus increases the working life of catalyst. And Pd based catalyst supported by a cation ordered κ-Ce2Zr2O8 is prepared for tritiated methane (CH4-xTx) oxidation. Tritiated methane is mostly oxidized by Pd/κ-Ce2Zr2O8 at about 450 °C, which is at least 50 °C lower than normal catalysts (such as Pd/Al2O3).

This content is only available via PDF.
You do not currently have access to this content.