Continuous improvement in Nuclear Industry Safety Standards and reactor designer’s and operator’s commercial goals lead to an increasing demand of fast running and highly accurate methodologies oriented to improve the prediction capabilities of main reactor’s parameters under steady state and transient situations.

An increasing effort has been observed during past years to develop high accurate multi-physics approach for nuclear reactor analysis, based both on the availability of advanced codes and the constant increase of computational resources with massive parallel architectures. As a result, several improvements have been observed in the implementation of coupled full 3-D Monte Carlo (MC) neutronic models for nuclear reactor cores, including not only the coupling to thermal-hydraulics but also fuel behavior codes. This approach has proved at concept level to be able to develop high accurate models that would allow to predict important safety and performance parameters of nuclear reactors with less conservativism.

Under this framework, the European Research and innovation project McSAFE is a coordinated effort started in September 2017 with the objective of moving MC stand-alone and coupled solution methodologies to become valuable tools for core design, safety analysis and industry like applications for LWRs of gen II and III.

In this work the Serpent 2 code, a high performance MC code developed by VTT, is used by the aim of performing the preliminary screening of capabilities, performance and limitations of such challenging objective.

As a result, simplified analysis are developed to identify full 3-D modeling computational requirements for typical LWR configurations, including burnup aspects. Potential bottlenecks and limitations are presented and discussed, providing foreseen alternatives and solutions for further code improvements.

This content is only available via PDF.
You do not currently have access to this content.