Passive residual heat removal system (PRHRS) is of great significance for reactor shutdown safety. The PRHRS of a small modular reactor, such as the integral pressurized water reactor (iPWR) and the modular high temperature gas-cooled reactor (MHTRG), is composed of the primary loop (PL), intermediate loop (IL) and air-cooling loop (AL). The AL is a density-difference-driven natural circulation caused by the difference of air temperature at the inlet and outlet of the air-cooling tower. Thus, it is possible to adopt the air flow in AL to generate electricity for post-shutdown reactor monitoring. In this paper, a novel residual heat electricity generation system (RHEGS), which is composed of the PRHRS and a vertical wind generator installed in the air-cooling tower, is proposed for the power supply of post-shutdown monitoring instruments. To verify the feasibility of practical implementation, the dynamical model of this newly designed RHEGS including the dynamics of PRHRS, windmill, rotor as well as doubly-fed induction generator (DFIG) are all given. Then, both steady-state and transient verification for the RHEGS of a nuclear heating reactor NHR200-II plant with a rated thermal power of 200 MWth is carried out, which shows that the output active power of RHEGS can be 20∼30kW which is about 1% the residual heat flux and can fully meet the power requirements of post-shutdown monitoring instruments.

This content is only available via PDF.
You do not currently have access to this content.