Clarifying thermal-hydraulic characteristics in a nuclear reactor core is important in particular to enhance the thermo-fluid safety of nuclear reactors. Spacers installed in subchannels of fuel assemblies have the role of keeping the interval between adjacent fuel rods constantly. Similarly, in case of PWR the spacer has also the role as the turbulence promoter. When the transient event occurs, two-phase flow is generated by boiling of water due to heating of fuel rods. Therefore, it is important to confirm the two-phase flow behavior around the spacer. So, the effect of the spacer affecting the two-phase flow was investigated experimentally at forced convective flow condition. Furthermore, in order to improve the thermal safety of current light water reactors, it is necessary to clarify the two-phase flow behavior in the subchannels at the stagnant flow condition. So, the bubbly flow data around a simulated fuel rod were obtained experimentally at the stagnant flow condition. A wire-mesh sensor was used to obtain a detailed two-dimensional void fraction distribution around the simulated spacer and fuel rod. As a result of this research, the bubbly behavior around the simulated spacer and fuel rod was qualitatively revealed and also bubble dynamics in the sub-channels at the conditions of forced convective and stagnant flows were evaluated. The present experimental data are very useful for verifying the detailed three-dimensional two-phase flow analysis codes.

This content is only available via PDF.
You do not currently have access to this content.