Choking flow plays an integral part not only in the engineered safeguards of a nuclear power plant (NPP), but also to everyday operation. Current NPP steam generators operate on the leak-before-break approach. The ability to predict and estimate a leak rate through a steam generator tube crack is an important safety parameter. Knowledge of the maximum flow rate through a crack in the steam generator tube allows the coolant inventory to be designed accordingly while limiting losses during loss of coolant accidents. Here an assessment of the choking flow models in thermal-hydraulics code RELAP5/MOD3.3 is performed and its suitability to predict choking flow rates through small axial cracks of the steam generator tubes is evaluated based on previously collected experimental data. Three sets of the data were studied in this work which corresponds to steam generator tube crack sample 1, 2, and 3. Each sample has a wall thickness, channel length (L), of 1.285 mm to 1.3 mm. Exit areas of these samples are 5.22 mm2, 9.05 mm2, and 1.72 mm2 respectively. Samples 1 and 2 have the same flow channel length to hydraulics diameter ratio (L/D) of 2.9 whereas sample 3 has a L/D of 6.5. A pressure differential of 6.8 MPa was applied across the samples with a range of subcooling from 5 °C to 60 °C. Flow rates through these samples were modeled using the thermal-hydraulic system code RELAP5/MOD3.3. Simulation’s results are compared to experimental values and modeling techniques are discussed. It is found that both the Henry-Fauske (H-F) and Ransom-Trapp (R-T) models better predict choking mass flux for longer channels. As the channel length decreases both models’ predictions diverge from each other. While RELAP5/MOD3.3 has been shown to predict choking flow in large scale geometries, further investigation of data sets need to be done to determine if it is suited well for small channel lengths.

This content is only available via PDF.
You do not currently have access to this content.