The continuous generation of graphite dust particles in the core of a High Temperature Reactor (HTR) is one of the key challenges of safety during the operation. The graphite dust particles emerge from relative movements between the fuel elements or from contact to the graphitic reflector structure and could be contaminated by diffused fission products from the fuel elements. They are distributed from the reactor core to the entire reactor coolant system. In case of a depressurisation accident, a release of the contaminated dust into the confinement is possible. In addition, the contaminated graphite dust can decrease the life cycle of the coolant system due to chemical interactions.

On the one hand, the knowledge of the behaviour of graphite dust particles under HTR conditions using helium as the flow medium is a key factor to develop an effective filter system for the discussed issue. On the other hand, it also provides a possibility to access the activity distribution in the reactor. The behaviour can be subdivided into short-term effects like transport, deposition, remobilization and long-term effects like reactions with material surfaces.

The Technische Universität Dresden has installed a new high-temperature test facility to study the short-term effects of deposition of graphite dust particles. The flow channel has a length of 5m and a tube diameter of 0.05m. With helium as the flow medium, the temperature can be up to 950 °C in the channel center and 120 °C on the sample surface, the Reynolds number can be varied from 150 up to 1000. The particles get dispersed into the accelerated and heated flow medium in the flow channel. Next, the aerosol is passing a 3 m long adiabatic section to ensure homogenous flow conditions. After passing the flow straightener, it enters the optically accessible measurement path made from quartz glass.

In particular, this test facility offers the possibility to analyse the influence of the thermophoretic effect separately. For this, an optionally cooled sample can be placed in the measuring area. The thickness of the particle layer on the sample is estimated with a 3D Laser scanning microscope. The particle concentration above the sample is measured with an aerosol particle sizer (APS). Particle Image Velocimetry (PIV) detects the flow-velocity field and provides data to estimate the shear velocity. In combination with the measured temperature-field, all necessary information for the calculation of the particle deposition and particle relaxation time are available.

The measurements are compared to results of theoretical works from the literature. The experimental database is relevant especially for CFD-developers, for model development, and model verification. A wide range of phenomena like particle separation, local agglomeration of particles with a specific particle mass and selective remobilization can be explained in this way. Thus, this work contributes to a realistic analysis of Nuclear Safety.

This content is only available via PDF.
You do not currently have access to this content.