The management of long-lived radionuclides in spent fuel is a key issue to achieve the closed nuclear fuel cycle and the sustainable development of nuclear energy. Partitioning-Transmutation is supposed to treat efficiently the long-lived radionuclides. Accordingly, the study of transmutation for long-lived Minor Actinides (MAs) is a significant work for the post-processing of spent fuel.

In the present work, the transmutations in Pressurized Water Reactor (PWR) Mixed OXide (MOX) fuel are investigated through the Monte Carlo based code RMC. Two kinds of MAs are incorporated homogeneously into two initial concentrations MOX fuel assembly.

The results indicate an overall nice efficiency of transmutation in both initial MOX concentrations, especially for two MAs primarily generated in the UOX fuel, 237Np and 241Am. In addition, the inclusion of 237Np has no large influence on other MAs, while the transmutation efficiency of 237Np is excellent. The transmutation of MAs in MOX fuel depletion is expected to be an efficient nuclear spent fuel management method.

This content is only available via PDF.
You do not currently have access to this content.