A computational fluid dynamics based simulation is performed to optimize the design of the flow distribution device in the lower plenum of the intermediate heat exchanger (IHX) of a pool-type sodium-cooled fast reactor (SFR) in this work. As a typical shell and tube heat exchanger, hot primary sodium flows in the IHX from the top and flows over the tube bundles, called shell-side. The secondary sodium (tube-side) runs through heat transfer tubes and its inlet plenum is specified at the bottom. The flow distribution device is arranged in the lower plenum of IHX, to change the flow distribution of the secondary sodium before into the heat transfer tubes. The CFD tool used in the work is ANSYS Fluent code. Two separated flow distribution devices have been simulated and compared. First, the orifice plates, three flow distribution orifice plates with different positions in the cylinder of lower plenum are respectively set as the model 1, 2 and 3. Secondly, the conical disk model, which is arranged at the bottom of the lower plenum, is established as model 4. And changing the size of the conical disk, the model 5 is established to predict the influence of the size of the conical disk on flow distribution. The results show that all of these models have similar velocity distributions at the outlet of lower plenum, which can be divided into three separate regions, where the flow velocity is higher at the inner and outer, and the velocity in the middle is lowest. When the orifice plate is set at the higher position, the overall velocity distribution is more uniform at the outlet. And the larger conical disk could make a more uniform velocity distribution as well.
Skip Nav Destination
2017 25th International Conference on Nuclear Engineering
July 2–6, 2017
Shanghai, China
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5786-1
PROCEEDINGS PAPER
A CFD-Based Optimization Design of Flow Distribution Device in the Lower Plenum of Intermediate Heat Exchanger of SFR
Xiaolong Zhang,
Xiaolong Zhang
Tsinghua University, Beijing, China
Search for other works by this author on:
Peichi Tseng,
Peichi Tseng
Tsinghua University, Beijing, China
Search for other works by this author on:
Muhammad Saeed
Muhammad Saeed
Tsinghua University, Beijing, China
Search for other works by this author on:
Xiaolong Zhang
Tsinghua University, Beijing, China
Peichi Tseng
Tsinghua University, Beijing, China
Jiyang Yu
Tsinghua University, Beijing, China
Muhammad Saeed
Tsinghua University, Beijing, China
Paper No:
ICONE25-66782, V008T09A027; 8 pages
Published Online:
October 17, 2017
Citation
Zhang, X, Tseng, P, Yu, J, & Saeed, M. "A CFD-Based Optimization Design of Flow Distribution Device in the Lower Plenum of Intermediate Heat Exchanger of SFR." Proceedings of the 2017 25th International Conference on Nuclear Engineering. Volume 8: Computational Fluid Dynamics (CFD) and Coupled Codes; Nuclear Education, Public Acceptance and Related Issues. Shanghai, China. July 2–6, 2017. V008T09A027. ASME. https://doi.org/10.1115/ICONE25-66782
Download citation file:
25
Views
Related Proceedings Papers
Related Articles
Computational Fluid Dynamics Evaluation of Heat Transfer Correlations for Sodium Flows in a Heat Exchanger
J. Heat Transfer (May,2010)
A New Approach to Numerical Simulation of Small Sized Plate Heat Exchangers With Chevron Plates
J. Heat Transfer (March,2007)
Heat Exchanger Design for the Process Industries
J. Heat Transfer (December,2004)
Related Chapters
Personnel and Requirements
Heat Exchanger Engineering Techniques
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Flow Characteristics in Shell Side of a New Type Heat Exchanger
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)