Flow characteristic in upper plenum has a strong influence on reactor functional margin and rod cluster control assembly (RCCA) guide tube wear. Upper plenum flow governs loops flow rate measurement via hot leg temperature which has also an influence on the reactor protection system. For RCCA guide tube wear, it appears in operation with RCCA flow-induced vibration, leading to its replacement. It is important to know the flow condition in the upper plenum, and in particular the outlet.

Existing Generation III reactors have their own specialties on the design. Comparison between current technologies is a good way for better understanding on the key structure design for the upper plenum.

In this paper, simplified models based on upper plenum structure of Korean advanced pressurized water reactor (PWR) and Westinghouse design AP1000 are constructed and meshed with a volume around 6 million cells to obtain a 3-dimensional global and local flow distributions inside the upper plenum and to characterize the vital flow features for reactor safety. The Navier-Stokes equations are solved with standard k-ε turbulence model by using EDF in-house open source computational fluid dynamic (CFD) software: Code_Saturne. Through calculations, pressure and velocity distributions are obtained, axial and lateral variations have been analyzed. Compared with APR1400, it can be observed that for the design of AP1000, the rotational flow entrained in the edge of upper plenum and high velocity area due to the hot leg suction effect contribute to the relatively lower local pressure, and may have an impact on the drop velocity of control rod.

This content is only available via PDF.
You do not currently have access to this content.