As a safety device to alleviate the loss of reactor coolant, the siphon breaking system is widely used in nuclear power plant. Researchers are very interested in this technique for its “passive” characteristic. Vertical downward air-water two-phase flow is encountered in the siphon breaking process. Previous researches have been more focused on some physical parameters, such as water flow rate, air flow rate, pressure drop and the undershooting height. Void fraction, as a key parameter in multiphase flow, should be studied in the siphon breaking phenomenon. Therefore, a needle-contact capacitance probe is used for flow-phase identification and a single-wire capacitance for obtaining the average value of gas distribution along the straight line. Experimental results show that the flow pattern during the vertical downward air-water two-phase flow is mostly annular flow. With the gas entering the pipeline, void fraction profile against time can be divided into three stages. The slope in the first stage is similar to that in the third. However, the slope slows down in the middle stage. The experimental results also show that the real duration time to break the siphon flow is as short as about 6 s. The void fraction at the end of the siphon breaking process is about 0.38. During this stage, a large amount of gas is sucked into the downcomer and little water is inhaled. The gas phase results in a convergent effect, where the air intake is the direct and fundamental reason of siphon breaking.
Skip Nav Destination
2017 25th International Conference on Nuclear Engineering
July 2–6, 2017
Shanghai, China
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5784-7
PROCEEDINGS PAPER
Experimental Study on the Void Fraction of Siphon Breaking Process Available to Purchase
Lei Xing-lin,
Lei Xing-lin
Tsinghua University, Beijing, China
Search for other works by this author on:
Huang Shan-fan,
Huang Shan-fan
Tsinghua University, Beijing, China
Search for other works by this author on:
Guo Zhong-xiao,
Guo Zhong-xiao
Tsinghua University, Beijing, China
Search for other works by this author on:
Guo Xiao-yu
Guo Xiao-yu
Tsinghua University, Beijing, China
Search for other works by this author on:
Lei Xing-lin
Tsinghua University, Beijing, China
Huang Shan-fan
Tsinghua University, Beijing, China
Guo Zhong-xiao
Tsinghua University, Beijing, China
Guo Xiao-yu
Tsinghua University, Beijing, China
Paper No:
ICONE25-66565, V006T08A039; 6 pages
Published Online:
October 17, 2017
Citation
Xing-lin, L, Shan-fan, H, Zhong-xiao, G, & Xiao-yu, G. "Experimental Study on the Void Fraction of Siphon Breaking Process." Proceedings of the 2017 25th International Conference on Nuclear Engineering. Volume 6: Thermal-Hydraulics. Shanghai, China. July 2–6, 2017. V006T08A039. ASME. https://doi.org/10.1115/ICONE25-66565
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Computational Fluid Dynamics Modeling of the Pressure Drop of an Iso-Thermal and Turbulent Upward Bubbly Flow Through a Vertical Pipeline Using Population Balance Modeling Approach
J. Energy Resour. Technol (October,2022)
Two-Phase Flow Through Square and Circular Microchannels—Effects of Channel Geometry
J. Fluids Eng (July,2004)
Pressure Drop and Void Fraction in Steam-Water Two-Phase Flow at High Pressure
J. Heat Transfer (August,2013)
Related Chapters
Experimental Characterization of a Cavitating Orifice
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Siphon Seals and Water Legs
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1