When the pellet-cladding mechanical interaction (PCMI) occurs in a reactivity-initiated accident (RIA), the states of stress and strain in the fuel cladding varies in a range depending on the friction and degree of bonding between cladding and pellet. Japan Atomic Energy Agency has developed the improved Expansion-due-to-compression (EDC) test apparatus to investigate the PCMI failure criterion of high-burnup fuel under such conditions. In this study, the failure behavior of cladding tube was investigated by using the improved EDC test apparatus. Cold-worked, stress-relieved and recrystallized Zircaloy-4 tubes with a pre-crack were used as test specimens: this pre-crack simulated the crack which is considered to form in the hydride rim of high-burnup fuel cladding at the beginning of PCMI failure. In the EDC test, a tensile stress in axial direction was applied and displacement-controlled loading was performed to keep the strain ratio of axial/hoop as a constant. The data of cladding deformation had been achieved in the range of strain ratio of 0, 0.25, 0.5 and 0.75 and pre-crack depth of 41–87 micrometers. Failures in hoop direction were observed in all the tested samples, and a general trend that higher strain ratio and deeper crack depth lead to lower failure limit in hoop direction could be seen. Different crack propagation mode was observed between recrystallized and stress relieved and cold worked samples, which might be due to the difference in microstructure caused by the final heat treatment at the fabrication of cladding.

This content is only available via PDF.
You do not currently have access to this content.