The fuel rods of pressurized water reactors operate under complex radioactive, thermal and mechanical conditions. Multiphysics has to be taken into account in order to evaluate their performance. Many existing fuel rod codes make great simplifications on analyzing the behavior of fuel rods. The present study develops a three dimensional module within the framework of a general-purpose finite element solver, i.e. ABAQUS, for modeling the thermo-mechanical performance of the fuel rods. A typical fuel rod is modeled and the temperature as well as the stress within the pellets are computed. The results show that the burnup levels have an important influence on the fuel temperature. The swelling of fission products cause dramatically increasing of pellet strain. The change of the cladding stress and radial displacement with the axial length can be reasonably predicted. It is shown that a quick power ramp or a reactivity insertion accident can induce high tensile stress to the outer regime of the pellet and may cause further fragmentation to the pellets.

This content is only available via PDF.
You do not currently have access to this content.