The hydrogen emission of zirconium hydride at high temperature is a challenging issue for many researchers. The hydrogen emission content of zirconium hydride pins should be evaluated to confirm the application feasibility. The comparison of theory analysis and experiment data indicated Richardson’s Law could offer a conservative result for calculating the hydrogen emission content of zirconium hydride pins at high temperature. Furthermore, the methods of preventing hydrogen loss should be developed for the purpose of extending the work temperature or time. The results showed a ZrO2 layer prepared for zirconium hydride could not prevent hydrogen loss after exposure at 923K in an inert environment and ZrO2 transformed into Zr3O gradually due to the opposite movement of hydrogen and oxygen. Finally, a further improvement to prevent hydrogen loss was developed. The zirconium hydride with a ZrO2 layer in the cladding of He+CO2 exhibited no significant reduction of hydrogen content. It is helpful to prevent the hydrogen loss by increasing the oxygen potential on the outside of ZrO2 layer.

This content is only available via PDF.
You do not currently have access to this content.