CAP1400 is a large passive pressurized water reactor nuclear power plant, which relies on engineering safety features such as passive containment cooling system (PCS) to remove the decay heat in the containment and mitigate accident consequences. PCS is designed to perform passive containment cooling which is mainly dependent on natural convection inside the containment and inner wall condensation heat transfer, outer containment surface water film coverage and evaporation heat transfer and external air flow path cooling performance, etc. Among them, the key factors that affect the performance of the external air flow path include the flow resistance characteristics of the air flow path and the wind-direction neutrality characteristics. The relevant performance will be the important design input of the accident analysis, which will directly affect the safety of the power plant.

During the normal operation of power plant, the PCS air flow path is influenced by the external environment, and its internal flow is very complicated. Designers are often lack of data support, and can’t fully consider the impact of environmental flow. In order to fully study the performance of PCS air flow path, it is necessary to perform PCS integrated scaled wind tunnel test.

According to the original design of CAP1400 PCS system, the model scale research is developed and CAP1400 PCS wind tunnel test scaled model is established and the scale is 1:100. The test model includes shield building model and the surrounding plant model, which contain pressure measuring points uniformly distributed in 6 horizontal cross sections of the shield building. The pressure measuring point arrangement does not affect air flow in the air flow path. The following wind tunnel tests are simulated in different wind speed including 15m/s, 20m/s, 10m/s, 25m/s. The air flow pressure, wind velocity at the inlet and outlet of air flow path and the pressure distribution of inner annulus and outer annulus are measured in order to study the air flow pressure drop and wind-direction neutrality characteristics, and the wind tunnel test also considers the different wind direction angle, with and without the surrounding buildings and the effects of different landforms.

The test results show that the flow rate of inlet and outlet of air flow path is balanced and the wind velocity at the upwind and central area of the flow path outlet is larger than other area, and a large vortex comes on the leeward side near the wall. The local uneven flow phenomenon exists in the outer annulus of the air flow path, but the wind pressure distribution of inner annulus is not affected by environment wind speed, wind direction angle, landforms and the surrounding buildings. So CAP1400 PCS air flow path has the characteristics of wind direction neutrality, and the natural convection of the air flow path will not be adversely affected by the environment wind.

This content is only available via PDF.
You do not currently have access to this content.