The Fukushima accident reminded us of the possible consequences in terms of radiological release that can result from a hydrogen explosion in a nuclear power plant, and, specifically, within the containment of a water cooled reactor building. Some mitigation means against hydrogen hazards exist but performance improvements in numerical tools simulating thermal-hydraulic flows and hydrogen combustion are necessary to allow realistic assessments of severe accident consequences in the containment. In this context, EDF works on CFD simulation of hydrogen distribution in penalized conditions. After dealing with cases for which the water spray system was assumed to be unavailable, and so treated with single-phase CFD code [1] [2], the present paper content is now about simulation and analysis of the local hydrogen concentration in the case of a severe accident for which the water spray system is available. Numerical developments of a multi-phase CFD code (Neptune_CFD) and code validation lead to consistent simulations.
The numerical simulation performed by EDF confirms the favorable safety impact of water spray on pressure and temperature for a LOCA scenario occurring on a 1300 MWe Pressurized Water Reactor. Nevertheless, CFD results show that the activation of the spray system before hydrogen injection gives greater hydrogen concentration. So, in the future, to better assess hydrogen risk, EDF will perform computations at CFD taking into account the interaction between combustion and water sprays.