One of the main goals of severe accident management strategies is to mitigate radiological releases to people and environment. To choose the most appropriate strategy, one needs to know the probability of its success taking into account the associated uncertainties. In the field of corium and debris behavior and coolability, research programs are still on going and the possibilities to efficiently cool and retain corium and debris inside the Reactor Pressure Vessel (RPV) then inside the containment are difficult to evaluate. This leads to uncertainties in safety assessments particularly when margins to RPV or containment failure are too weak.

In Vessel Melt Retention (IVMR) strategies for Light Water Reactors (PWR, BWR, VVER) intend to stabilize and retain the core melt in the RPV (as it happened during the TMI-2 accident). This would reduce significantly the threats to the last barrier (the containment) and therefore reduce the risk of release of radioactive elements to the environment.

This type of Severe Accident Management (SAM) strategy has already been incorporated recently in the SAM guidance (SAMG) of several operating medium size Light Water Reactors (reactor below 500MWe (like VVER440)) and is part of the SAMG strategies for some Gen III+ PWRs of higher power like the AP1000. A European project coordinated by IRSN and gathering 23 organizations (Utilities, Technical Support Organizations, Nuclear Power Plant vendors, Research Institutes…) has been launched in 2015 with as main objective the evaluation of feasibility of IVMR strategies for Light Water Reactors (PWR, VVER, BWR) of total power around 1000MWe (which represent a significant part of the European Nuclear Power Plants fleet).

This paper intends to show how it is possible to introduce transient evolutions of the stratified corium pool in the evaluation of the heat flux profile along the vessel wall. Indeed, due to chemical reactions in the U–Zr–O–Fe molten pool, separation between non-miscible metallic and oxide phases may occur, modifying the thermal load applied to the RPV. If stabilized stratified corium configurations are well defined and modeled, transient evolutions of material layers in the corium pool are still difficult to predict. The evaluations presented are based on calculations performed with the severe accident integral code ASTEC (Accident Source Term Evaluation Code) for a typical PWR reactor. The modeling of transient evolution of corium layers leads to configurations with a thin light metal layer on top of the oxidic one, increasing the so called “focusing effect” (intense heat fluxes on the RPV walls adjacent to the top metal layer). A sensitivity study on some uncertain parameters is proposed to evaluate the impact on the kinetics of layers inversion. Depending on the duration of these transient heat fluxes, the mechanical strength of the RPV could be challenged.

This content is only available via PDF.
You do not currently have access to this content.