The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. There is evidence that the failure of key instrumentation to provide reliable information to the control room licensed operators contributed to the severity of the accident at both TMI and Fuskushima Daiichi. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data and yet have to make urgent decisions. While progress in these areas has been made since TMI-2, the accident at Fukushima suggests there may still be some potential for further improvement in critical plant instrumentation. As a result, several approaches are being employed to provide better information to emergency response personnel during a severe accident.

The first approach being taken by the PWROG and BWROG is the identification of methods to obtain information related to key plant parameters when there is a loss of dc power for instrumentation and control. The FLEX guidance in NEI 12-06 requires that reliable instrumentation be available to ensure core, containment and spent fuel pool cooling is maintained for the beyond design basis events for which FLEX was intended. For the most part, this instrumentation that is important for FLEX is the same instrumentation that is used for diagnosis of severe accident conditions and challenges to fission product barriers. Generic FLEX Support Guidelines have been developed to provide a uniform basis for plants to meet the NEI 12-06 requirements that includes methods to obtain key parameter values in the event of a loss of all dc instrument power.

The PWROG and the BWROG have also taken a complimentary approach to provide Technical Support Guidance (TSG) for instrumentation during a severe accident. This approach identifies the primary instrumentation as well as alternate instrumentation and other tools to validate the indications from the primary instrumentation. The validation consists of: a) comparing the primary instrument indications to the alternate instrumentation, b) comparing instrument indications to related instrumentation, c) comparing instrument indications and trends to expected trends based on the accident progression and actions already implemented, and d) comparing instrument indications to information in calculational aids.

This content is only available via PDF.
You do not currently have access to this content.