This work presents a novel core multiphysics coupling method and its application to geometries and thermal hydraulic operating conditions typical of U.S. PWRs. Monte Carlo based radiation transport from the MCNP v6.1.0 package and finite volume thermal hydraulic (TH) packages provided by ANSYS-FLUENT v14.0 are combined to produce results with intra-pin resolved spatial resolution equivalent to state-of-the-art reactor physics and multi-physics suites. The Virtual Environment for Reactor Applications (VERA) whose development is spearheaded at Oak Ridge National Laboratory is one such example package. Results from the MCNP-FLUENT coupling framework are compared to a deterministic solution provided by the MPACT-COBRA-TF (MPACT-CTF) package available in VERA. Comparisons between the MCNP-FLUENT methodology and the MPACT-CTF solutions are provided for a single pin case. Good power and eigenvalue agreement (+/−4%, 352[pcm] respectively) is achieved at hot full power conditions.

This content is only available via PDF.
You do not currently have access to this content.