In the typical boiling water reactor (BWR), each control rod guide tube supports four fuel assemblies via an orificed fuel support piece in which a channel is designed to be a potential corium relocation path from the core region to the lower head under severe accident conditions. In this study, the improved Moving Particle Semi-implicit (MPS) method was adopted to analyze the melt flow and ablation behavior in this region during a severe accident of BWR. A three-dimensional particle configuration was constructed for analyzing the melt flow behavior within the fuel support piece. Considering the symmetry of the fuel support piece, only one fourth of the fuel support was simulated. The eutectic reaction between Zr (the material of the corium) and stainless steel (the material of the fuel support piece) was taken into consideration. The typical melt flow and freezing behaviors within the fuel support piece were successfully reproduced by MPS method. In all the simulation cases, the melt discharged from the hole of the fuel support piece instead of plugging the fuel support piece. The results indicate that MPS method has the capacity to analyze the melt flow and solidification behavior in the fuel support piece.

This content is only available via PDF.
You do not currently have access to this content.