The author recently identified that there should exist a “differential radiation cell” mechanism in the reactor water, prompting “radiation-induced electrolytic (RIE)” phenomena. This mechanism was identified while trying to theoretically reconstruct the potential differences observed in two in-pile test loops; NRI-Rez in Czech Republic and INCA Loop in Sweden.

Part 2 of this series focuses on the theoretical reconstruction of the observed potential differences. Assuming a state of equilibrium, the author tried to develop a formalism by extending the Nernst equation to reproduce the observed redox potential differences. The radiological potential shift term is separated from the Nernst equation where the latter deals only with stable molecular and ionic species. The radiological effect is described as a perturbation term to the Nernst equation representing a potential shift due to radiation-chemical reactions which should diminish to zero without radiation.

The theory generally reproduced the experimental results after fitting the theoretical curve at a single point of the potential for both PWR and BWR-NWC water chemistry environments. This discrepancy is likely due to the “conductive-dielectric property” of the reactor water.

This content is only available via PDF.
You do not currently have access to this content.