This work uses the 2-D C5G7 benchmark to verify the accuracy of the MOCUM code, a parallel neutronics program based on the method of characteristics (MOC) for solving arbitrary core geometry. Compared to the MCNP results, MOCUM k-eff, maximum assembly and pin power percentage errors are 0.02%, −0.06%, and 0.64%, respectively. The results demonstrate the high accuracy of the MOCUM code. The calculation uses a total of 56 threads, and the runtime on dual Intel Xeon E5-2699 v3 CPUs is 26 minutes, with speed up higher than 50 times. The sensitivity study of various MOC parameters using the calculation of the C5G7 benchmark problem is also performed. The study reveals that C5G7 requires the usage of 48 or more azimuthal angles. The strong flux gradient and the heterogeneous effects need fine unstructured meshes to resolve. The simulation uses 258 million zones with an average mesh size of 0.016 cm2. The investigation of the polar angle quadrature indicates that Leonard polar angle performs slightly better than Gauss-Legendre and Tabuchi polar angles and more than three polar angles are not necessary. In addition, parameter sensitivity study shows that coarse parameters are prone to introduce error to the neutron flux but not k-eff.
Skip Nav Destination
2016 24th International Conference on Nuclear Engineering
June 26–30, 2016
Charlotte, North Carolina, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5001-5
PROCEEDINGS PAPER
MOCUM Code Verification and Sensibility Study Using C5G7 Benchmark
Xue Yang,
Xue Yang
Texas A&M University-Kingsville, Kingsville, TX
Search for other works by this author on:
Rajan Borse,
Rajan Borse
Texas A&M University-Kingsville, Kingsville, TX
Search for other works by this author on:
Nader Satvat
Nader Satvat
Universiti Teknologi Malaysia, Skudai, Malaysia
Search for other works by this author on:
Xue Yang
Texas A&M University-Kingsville, Kingsville, TX
Rajan Borse
Texas A&M University-Kingsville, Kingsville, TX
Nader Satvat
Universiti Teknologi Malaysia, Skudai, Malaysia
Paper No:
ICONE24-60443, V001T02A020; 8 pages
Published Online:
October 25, 2016
Citation
Yang, X, Borse, R, & Satvat, N. "MOCUM Code Verification and Sensibility Study Using C5G7 Benchmark." Proceedings of the 2016 24th International Conference on Nuclear Engineering. Charlotte, North Carolina, USA. June 26–30, 2016. V001T02A020. ASME. https://doi.org/10.1115/ICONE24-60443
Download citation file:
8
Views
Related Articles
A Full Kinematic Model of Thread-Starting for Assembly Automation Analysis
J. Mech. Des (January,2006)
Spatial Kinematic Analysis of Threaded Fastener Assembly
J. Mech. Des (January,2006)
Averaging Effect on Pitch Errors in Hydrostatic Lead Screws With Continuous Helical Recesses
J. Tribol (April,2016)
Related Chapters
The Execution Time Overhead of Entering and Exiting Scoped Memory in Real-Time Java Applications
International Conference on Computer Engineering and Technology, 3rd (ICCET 2011)
Positioning and Channel Strategy of Jiuan Company in the Domestic Market
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
Cache Insertion Policy Based on Each Thread's Behavior
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)