The influence of the in-vessel melt progression on the uncertainty of source terms was examined in the uncertainty analysis with integral severe accident analysis code MELCOR (Ver. 1.8.5), taking the accident at Unit 2 of the Fukushima Daiichi nuclear power plant as an example. The 32 parameters selected from the rough screening analysis were sampled by Latin hypercube sampling technique in accordance with the uncertainty distributions specified for each parameter. The uncertainty distributions of the outputs, including the source terms of the representative radioactive materials (Cs, CsI, Te and Ba), the total mass of in-vessel H2 generation and the total debris mass released from the reactor pressure vessel to the drywell, were obtained through the uncertainty analysis with an assumption of the failure of drywell. Based on various types of correlation coefficient for each parameter, 9 significant uncertain parameters potentially dominating the source terms were identified. These 9 parameters were transferred to the subsequent sensitivity and uncertainty analyses, in which the influence of the transportation of radioactive materials was taken into account.

This content is only available via PDF.
You do not currently have access to this content.