The quantitative evaluation of the fission product release to the environment during a severe accident is of great importance. In the present analysis, integral severe accident code MELCOR 1.8.5 has been applied to estimating uncertainty of source term for the accident at Unit 2 of the Fukushima Daiichi nuclear power plant (NPP) as an example and to discussing important models or parameters influential to the source term. Forty-two parameters associated with models for the transportation of radioactive materials were chosen and narrowed down to 18 through a set of screening analysis. These 18 parameters in addition to 9 parameters relevant to in-vessel melt progression obtained by the preceding uncertainty study were input to the subsequent sensitivity analysis by Morris method. This one-factor-at-a-time approach can preliminarily identify inputs which have important effects on an output, and 17 important parameters were selected from the total of 27 parameters through this approach. The selected parameters have been integrated into uncertainty analysis by means of Latin Hypercube Sampling technique and Iman-Conover method, taking into account correlation between parameters. Cumulative distribution functions of representative source terms were obtained through the present uncertainty analysis assuming the failure of suppression chamber. Correlation coefficients between the outputs and uncertain input parameters have been calculated to identify parameters of great influences on source terms, which include parameters related to models on core components failure, models of aerosol dynamic process and pool scrubbing.
Skip Nav Destination
2014 22nd International Conference on Nuclear Engineering
July 7–11, 2014
Prague, Czech Republic
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4596-7
PROCEEDINGS PAPER
Estimation of Source Term Uncertainty in a Severe Accident With Correlated Variables
Xiaoyu Zheng,
Xiaoyu Zheng
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Search for other works by this author on:
Hiroto Itoh,
Hiroto Itoh
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Search for other works by this author on:
Hitoshi Tamaki,
Hitoshi Tamaki
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Search for other works by this author on:
Yu Maruyama
Yu Maruyama
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Search for other works by this author on:
Xiaoyu Zheng
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Hiroto Itoh
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Hitoshi Tamaki
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Yu Maruyama
Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Paper No:
ICONE22-30011, V006T15A001; 10 pages
Published Online:
November 17, 2014
Citation
Zheng, X, Itoh, H, Tamaki, H, & Maruyama, Y. "Estimation of Source Term Uncertainty in a Severe Accident With Correlated Variables." Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Prague, Czech Republic. July 7–11, 2014. V006T15A001. ASME. https://doi.org/10.1115/ICONE22-30011
Download citation file:
7
Views
Related Articles
Pearson Correlation and Chi-Squared Methods Applied to the Sensitivity and Uncertainty Analysis of Hydrogen Generation During a BWR STSBO Using MAAP5 and AZTUSIA
ASME J of Nuclear Rad Sci (January,0001)
Safest Roadmap for Corium Experimental Research in Europe
ASME J. Risk Uncertainty Part B (September,2018)
Phenomenological Analysis of Melt Progression in LWRS: Proposal of an In-Vessel Corium Progression Scenario in the Unit 1 of Fukushima Dai-ichi Nuclear Power Plant
ASME J of Nuclear Rad Sci (October,2016)
Related Chapters
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Link between Level 2 PSA and Off-Site Emergency Preparedness (PSAM-0363)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Subsection NCA—General Requirements for Division 1 and Division 2
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition