We preliminarily designed a power tracking and control system using single-chip computers and industrial control computer in the electric heating simulated power loop. The system is an innovational design based on the proven simulated nuclear power loop, with increased techniques of step-less power regulation system and modeling nuclear feedback effect correctional programs. We promoted both hardware and software designs of this power tracking and control system in this paper. It used single-chip computers as the core control chips and an industrial control computer as the additional correctional program and record carrier. The process and implementation of the control software are presented, which is designed as a fuzzy theoretical nonlinear system. In order to ensure the subsequent updates, the access interface of the system is open for following correctional programs, including the correctional program of void fraction effect, temperature effect, hysteresis effect and heat power distribution effect. Taken hysteresis effect correctional program as an example, we use an offset tic-tac clock replacing the inherent tic-tac clock in different devices of the system in order to reduce the hysteresis effect of measuring and corresponding errors. We also put out a preliminary analysis of the accurate synchronization for the system at the end of the paper.

This content is only available via PDF.
You do not currently have access to this content.