After Fukushima accident, decay heat removal in station blackout (SBO) accident is concerned for different NPP design. Advanced passive PWR relies on passive systems to cool reactor core and containment, such as the passive residual heat removal system (PRHR), passive injection system and passive containment cooling system (PCCS). Passive safety systems are considered more reliable than traditional active safety system under accident condition. However, in long-term SBO situation, possible failure of passive safety systems is noticed as active valves are needed in system actuation. Moreover, probability safety analysis results of advanced passive PWR show that system failure is possible without external event. Given different passive safety system failure assumptions, response of reactor coolant system and containment of advanced passive PWR is calculated in SBO accident, the integrity of core, reactor pressure vessel and containment is assessed, and decay heat removal approach is studied. The results show that containment failure is predicted with the failure of PCCS and PRHR, reactor vessel failure together with containment failure is predicted with the failure of PCCS, passive injection system and PRHR. Advices to deal with the risk of advanced passive PWR in SBO are given based on the study.

This content is only available via PDF.
You do not currently have access to this content.