A Field Programmable Gate Array (FPGA) is a type of integrated circuit (IC), which is programmed after it is manufactured. FPGAs are referred to as a form of programmable hardware, as there is typically no software or operating system running on the FPGA itself. A significant amount of design work has been performed regarding the application of FPGAs in the nuclear field in recent years, with much of that work centered around safety related Instrumentation and Control (I&C) systems and safety systems. These new FPGA based systems are considered to be viable alternatives to replace many old I&C systems that are commonly used in Nuclear Power Plants (NPPs). Many of these older analog and digital systems are obsolete, and it has become increasingly difficult to maintain and repair them. FPGAs possess certain advantages over traditional analog circuits, PLCs and microprocessors, when considering nuclear I&C and safety system applications. This paper describes how FPGA technology has been used to construct a lab-scale implementation of a Post-Accident Monitoring System (PAMS), for a Westinghouse AP1000 Nuclear Power Plant, using a National Instruments “cRIO” chassis and I/O modules. This system will perform the major functions of the existing PAMS, including monitoring the vital values such as temperature, water level, pressure, flow rate, radiation levels and neutron flux in the event of a serious reactor accident. These values are required in standards such as United States Nuclear Regulatory Commission (NRC), Canadian Nuclear Safety Commission (CNSC), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE). All of the input signals are read and processed using the FPGA, which includes alarms if the values go beyond the specified range, or if the values change rapidly. The values were then output to the computer through the FPGA interface to provide information to the operator, as well as being sent through analog and digital output modules for further processing. The system was tested using both simulated and real inputs from sensors. Furthermore, the reliability of the new system has also been analyzed, using the Dynamic Flowgraph Methodology (DFM). DFM has been successfully applied in both the nuclear and aerospace fields, and has been described as one of the best methodologies for modeling software/hardware interactions, by the scientific literature as well as in NRC reports. DFM was applied to fine-tune the design parameters by determining the potential causes of faults in the design, as well as to highlight the effectiveness of DFM in nuclear and in FPGA applications.
Skip Nav Destination
2014 22nd International Conference on Nuclear Engineering
July 7–11, 2014
Prague, Czech Republic
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4595-0
PROCEEDINGS PAPER
Lab-Scale Design, Demonstration and Safety Assessment of an FPGA-Based Post Accident Monitoring System for Westinghouse AP1000 Nuclear Power Plants Available to Purchase
Phillip McNelles,
Phillip McNelles
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Lixuan Lu
Lixuan Lu
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Phillip McNelles
University of Ontario Institute of Technology, Oshawa, ON, Canada
Lixuan Lu
University of Ontario Institute of Technology, Oshawa, ON, Canada
Paper No:
ICONE22-30457, V005T17A038; 16 pages
Published Online:
November 17, 2014
Citation
McNelles, P, & Lu, L. "Lab-Scale Design, Demonstration and Safety Assessment of an FPGA-Based Post Accident Monitoring System for Westinghouse AP1000 Nuclear Power Plants." Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Volume 5: Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition. Prague, Czech Republic. July 7–11, 2014. V005T17A038. ASME. https://doi.org/10.1115/ICONE22-30457
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Dynamic Flowgraph Methodology Assessment of an FPGA-Based Postaccident Monitoring System for Westinghouse AP1000 Nuclear Power Plants
ASME J of Nuclear Rad Sci (July,2015)
The Great Out of the Small
Mechanical Engineering (November,2000)
Manipulation System for Measuring Heat Flux in Radioactive Melt
ASME J of Nuclear Rad Sci (April,2021)
Related Chapters
Managing Energy Resources from within the Corporate Information Technology System
Industrial Energy Systems
Constructing Dynamic Event Trees from Markov Models (PSAM-0369)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
QRAS Approach to Phased Mission Analysis (PSAM-0444)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)