In a nuclear power plant, one of the important issues is an evaluation of the safety of the reactor core and its pipes when an earthquake occurs. Many researchers have conducted studies on constructions of plants. Consequently, there is some knowledge about earthquake-resisting designs.

However the influence of an earthquake vibration on thermal fluid inside a nuclear reactor plant is not fully understood. Especially, there is little knowledge how coolant in a core response when large earthquake acceleration is added. Some studies about the response of fluid to the vibration were carried out. And it is supposed that the void fraction and/or the power of core are fluctuated with the oscillation by the experiments and numerical analysis. However the detailed mechanism about a kinetic response of gas and liquid phases is not enough investigated, therefore the aim of this study is to clarify the influence of vibration of construction on bubbly flow behavior. In order to investigate the influence of vibration of construction on bubbly flow behavior, we visualized bubbly flow in pipeline on which sine wave was applied. In a test section, bubbly flow was produced by injecting gas into liquid flow through a horizontal circular pipe. In order to vibrate the test section, an oscillating table was used. The frequency and acceleration of vibration added from the oscillating table was from 1.0 Hz to 10 Hz and . 0.4 G (1 G=9.8 m/s2) at each frequency. The test section and a high speed video camera were fixed on the oscillating table. Thus the relative velocity between the camera and the test section was ignored. PIV measurement was also conducted to investigate interaction between bubble motion and surround in flow structure. Liquid pressure was also measured at upstream and downstream of the test section. The effects of oscillation on bubbly flow were quantitatively evaluated by these pressure measurements and the velocity field. In the results, it was observed that the difference of bubble motion by changing oscillation frequency. Moreover it was suggested that the bubble deformation is correlated with the fluctuation of liquid velocity field around the bubble and the pressure gradient in the flow area. In addition, these experimental results were compared with numerical simulation by a detailed two-phase flow simulation code with an advanced interface tracking method, TPFIT. Numerical simulation was qualitatively agreed with experimental results.

This content is only available via PDF.
You do not currently have access to this content.