The present paper describes a first step taken at the Paul Scherrer Institut in the development of a new multi-physics platform for reactor analysis. Such platform is based on the finite-volume software OpenFOAM and aims at a tightly coupled description of neutron transport, thermal mechanics and fluid dynamics. For this purpose, a steady-state 3-D discrete ordinates/thermal-mechanics solver was first developed in collaboration with the Politecnico di Milano. The present work briefly discusses such solver and its preliminary validation, which will be described in detail in parallel publications. It then focuses on its extension to time-dependent simulations. The solver is first tested by simulating different step-wise reactivity insertions in a critical configuration constituted by an infinite slab of highly enriched uranium. Subsequently, a super-prompt-critical power burst in the Godiva reactor has been simulated. Godiva was a spherical assembly of highly enriched uranium built and operated at the Los Alamos National Laboratory (US) during the Fifties. A prompt-critical transient in such system configures as a quick power excursion (up to ∼10 GW), which causes a temperature rise, and a subsequent reactivity reduction via expansion of the sphere. The overall transient lasts for few fractions of a millisecond. Results obtained with the newly developed model have been compared to experimental results, showing a relatively good agreement.

This content is only available via PDF.
You do not currently have access to this content.