Most open-pool type research reactors, which are cooled by forced convection, have a downward flow for several advantages. Downward flow can minimize pool surface radiation, and makes a fuel assembly easy to be fixed on the grid plate of a reactor core. After LOFA (Loss of Flow Accident) or even normal shutdown, a reactor core has to go through a flow inversion from downward to upward owing to a natural circulation. As the pump is turned off, coolant flow in the core becomes slow and finally stagnant upon a flow inversion occurrence. During the flow inversion, it is a concern that the onset of nucleate boiling (ONB) or a departure from nucleate boiling (DNB) may occur. Recently, there have been several studies on predicting the flow inversion and temperature of a fuel plate to find whether an ONB occurs, using one-dimensional thermal hydraulic analysis codes and computational fluid dynamics (CFD) codes. These studies have concentrated on only a single channel but they did not consider other important effects such as the piping, valves, and pool. In the present study, a numerical simulation using a CFD code was carried out to determine the flow inversion phenomenon. The CFD model considers 21 thin plates of an in-line array which release heat uniformly. The 21 plates make 22 thin channels of which the inlets are connected to a large pool. The outlets of the thin channels are connected to the large pool through a flap valve. A CFD simulation was carried out during 80 seconds after the reactor shutdown. It shows the behaviors of a flow through the flap valve as well as the flow inversion in the channels. Another numerical simulation using the RELAP5 code was conducted to compare with the CFD simulation results. In the comparison, CFD predictions such as coolant temperature variation, heating plate temperature variation, and flow rate through the flap valve, show similar results with those of the RELAP5 analyses.
Skip Nav Destination
2014 22nd International Conference on Nuclear Engineering
July 7–11, 2014
Prague, Czech Republic
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4594-3
PROCEEDINGS PAPER
Numerical Analysis on Flow Inversion in a Uniformly Heated Thin Rectangular Channel Array
Jonghark Park,
Jonghark Park
Korea Atomic Energy Research Institute, Daejeon, Korea
Search for other works by this author on:
Suki Park,
Suki Park
Korea Atomic Energy Research Institute, Daejeon, Korea
Search for other works by this author on:
Daeseong Jo,
Daeseong Jo
Korea Atomic Energy Research Institute, Daejeon, Korea
Search for other works by this author on:
Heetaek Chae,
Heetaek Chae
Korea Atomic Energy Research Institute, Daejeon, Korea
Search for other works by this author on:
Byungcheol Lee
Byungcheol Lee
Korea Atomic Energy Research Institute, Daejeon, Korea
Search for other works by this author on:
Jonghark Park
Korea Atomic Energy Research Institute, Daejeon, Korea
Suki Park
Korea Atomic Energy Research Institute, Daejeon, Korea
Daeseong Jo
Korea Atomic Energy Research Institute, Daejeon, Korea
Heetaek Chae
Korea Atomic Energy Research Institute, Daejeon, Korea
Byungcheol Lee
Korea Atomic Energy Research Institute, Daejeon, Korea
Paper No:
ICONE22-30876, V004T10A039; 6 pages
Published Online:
November 17, 2014
Citation
Park, J, Park, S, Jo, D, Chae, H, & Lee, B. "Numerical Analysis on Flow Inversion in a Uniformly Heated Thin Rectangular Channel Array." Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Volume 4: Radiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory. Prague, Czech Republic. July 7–11, 2014. V004T10A039. ASME. https://doi.org/10.1115/ICONE22-30876
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Thermal Transport and Flow in High-Speed Optical Fiber Drawing
J. Heat Transfer (November,1998)
An Investigation of the Collapse and Surface Rewet in Film Boiling in Forced Vertical Flow
J. Heat Transfer (May,1975)
Related Chapters
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Subsection NC, ND—Class 2 and 3 Components
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition