High Temperature Gas Cooled Reactor (HTGR) has inherent safety, and has been selected as one of the candidates for the Gen-IV nuclear energy system. In china, the project of the High Temperature Reactor Pebble bed Module (HTR-PM) is in design and construction process. Spherical fuel elements are chosen for the HTR-PM and the spent fuel elements will be stored in canister. The spent fuel canister will be delivered to wells for storage when fully loaded. The canister is covered by a steel cask for radiation shielding, and the cask is covered by a boron polyethylene sleeve to absorb neutrons from decay in fuel loading process. Normally, the residual heat is discharged by forced ventilation in fuel loading process. An auxiliary fan is set on top of the cask considering the possible mechanical failure for the operating fan. When losing normal power supply, the emergency power will be provided to the fans by the two line diesel generators respectively. In extreme conditions of mechanical failure for both fans, the residual heat could be discharged by natural ventilation. The temperature profiles of the different structures were studied in this paper with CFD method for both normal and accident conditions. The calculation results showed that, the maximum temperature of all of the structures are lower than the safety temperature limits in either normal or accident conditions; the temperature decreases rapidly with radial distance in the canister, and the maximum temperature is located at the center of the fuel pebble bed. So it is feasible to remove the residual heat of the spent fuel by natural ventilation in accident condition, and in the natural ventilation condition, the maximum temperature of the spent fuel, the canister shell, the shielding cask, and the boron polyethylene sleeve are lower than their safety temperature limits.

This content is only available via PDF.
You do not currently have access to this content.