ARES is a multi-group of anisotropic scattering transport shielding code based on discrete ordinates method. The 3D radiation transport benchmark problems proposed by Kobayashi were calculated by ARES with sub-module ARES_RayEffect which using first collision method for ray effects mitigation. ARES_RayEffect calculates uncollided flux and first collision source moments for ARES. The uncollided flux is obtained by a ray tracing calculation between a source point and a target mesh center. In addition, ARES_RayEffect has a modifying factor function to improve the quality of uncollided flux calculation. For verification, the results of MCNP code are used as reference solution and the results of TORT with FNSUNCL3 are compared. ARES_RayEffect introduced the modifying factor to reduce the relative difference of meshes near the source region. For example, at the position (15,15,15) in Problem 1 case i, the relative difference of the result of ARES with ARES_RayEffect is −2.34%, while relative difference of the result of TORT with FNSUNCL3 is −11.92%. The calculated total neutron fluxes show good agreement with the MCNP solutions. For the pure absorber cases, the maximum differences are less than 3%. For the half scattering cases, the maximum differences are less than 11%. Numerical results demonstrate that ray effects can be effectively mitigated.

This content is only available via PDF.
You do not currently have access to this content.