The possibility of a spent fuel severe accident has received increasing attention in the last decade, and in particular following the Fukushima accident. Several large scale experiments and also separate effect tests have been conducted to obtain a data base for model development and code validation. The outcome of the Sandia BWR Fuel Project was used to define the flow parameters adjusted for the low pressure and the increased flow resistance due to the presence of the spent fuel racks which resulted in reduced buoyancy driven natural circulation flow compared with reactor geometry. The possibility of a zirconium fire, using the flow parameters obtained from the spent fuel experiments, is investigated in the present work. The important outcome of the study is that spent fuel will degrade if temperatures above 800 K are reached. In partial loss of coolant accidents the flow through the lower bottom nozzle is blocked and because there is no cross flow possible due to the spent fuel racks the coolant flow in the upper dry part of the spent fuel is limited by the steam production in the lower still wetted part of the fuel. This accident scenario leads to the fastest heat up in a postulated spent fuel accident. The influence of different kind of spent fuel storage (hot neighbour and cold neighbour) is investigated. An important factor in these calculations is the radial heat transfer to the neighbouring fuel assemblies. In the present work limits of the spent fuel storage under accident conditions (minimum allowed water levelin the pool) and total loss of coolant (maximum coolable decay heat per fuel assembly) are shown and explained.

This content is only available via PDF.
You do not currently have access to this content.