The Nuclear Power Plants (NPPs) have been built on the concept of Defense in depth. The severe accident causes the failure of fission product barriers and let the fission products to escape into environment. The containment is the last barrier to the fission products. Thus, the containment is installed with engineering safety features (ESFs) i.e. spray system, heat removal system, recirculation filtration system; containment filtered venting system (CFVS), and containment exhaust filtration system. In this work, kinetic study of the containment retention factor (CRF) has been carried out for a large dry PWR containment considering 1000 MWe PWR. The computational modeling and simulation have been carried out by developing a kinetic code in MATLAB, which uses the fractions of activity airborne into the containment after the accident. The Kinetic dependency of CRF on containment filtration systems, spray system with caustic and boric acid spray has been carried out. For noble gases, iodine and aerosols, the CRF increases with the increase in exhaust rate. While, CRF for iodine first increases then start reducing with containment spray flow rate. The Kinetic dependency of CRF has also been studied for boric and caustic spray.

This content is only available via PDF.
You do not currently have access to this content.