Several designs of light water reactors consider melt fragmentation and cooling of corium debris bed in a deep pool as important part of their severe accident management strategies. Traditional approach to assessment of debris coolability is based on the bed dryout criterion. However, this is the most conservative criterion which doesn’t take into account possibility of debris temperature stabilization in steam cooling regime. In this work numerical simulations of cooling of a decay heat-releasing porous debris bed in a water pool are carried out for the conditions where local dryout of porous material occurs. It is shown that the temperature of solid material in the dry zone can be stabilized if sufficient vapor flow is generated in the wetted part of the debris bed beneath the dry zone. A simple one-dimensional model which connects the maximum temperature and the relative size of the dry zone is proposed and verified against the numerical simulations with DECOSIM code for different shapes of the debris beds relevant to severe accident conditions in a Nordic type boiling water reactor (BWR). On the basis of this model, a criterion is obtained which defines the critical relative height of the dry zone corresponding to specific temperature of debris material which can be considered as a safety limit (e.g. start of zirconium oxidation, remelting of metallic debris or oxidic corium, etc.). The criterion allows one to evaluate the safety margins and degree of conservatism introduced by the dryout-based approach to assessment of debris coolability.
Skip Nav Destination
2014 22nd International Conference on Nuclear Engineering
July 7–11, 2014
Prague, Czech Republic
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4591-2
PROCEEDINGS PAPER
A Model for Prediction of Maximum Post-Dryout Temperature in Decay-Heated Debris Bed
Sergey E. Yakush,
Sergey E. Yakush
Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
Search for other works by this author on:
Pavel Kudinov
Pavel Kudinov
Royal Institute of Technology, Stockholm, Sweden
Search for other works by this author on:
Sergey E. Yakush
Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
Pavel Kudinov
Royal Institute of Technology, Stockholm, Sweden
Paper No:
ICONE22-31214, V02BT09A057; 11 pages
Published Online:
November 17, 2014
Citation
Yakush, SE, & Kudinov, P. "A Model for Prediction of Maximum Post-Dryout Temperature in Decay-Heated Debris Bed." Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Volume 2B: Thermal Hydraulics. Prague, Czech Republic. July 7–11, 2014. V02BT09A057. ASME. https://doi.org/10.1115/ICONE22-31214
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
The Plant Feature and Performance of Double MS (Modular Simplified and Medium Small Reactor)
J. Eng. Gas Turbines Power (January,2010)
Introducing Passive Nuclear Safety in Water-Cooled Reactors - Numerical Simulation and Validation of Natural Convection Heat Transfer and Transport in Packed Beds of Heated Microspheres
ASME J of Nuclear Rad Sci (January,0001)
Calculations of Combined Radiation and Convection Heat Transfer in Rod Bundles Under Emergency Cooling Conditions
J. Heat Transfer (August,1976)
Related Chapters
Lessons Learned: NRC Experience
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Modeling of SAMG Operator Actions in Level 2 PSA (PSAM-0164)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)