Once-Through Steam Generator (OTSG) is widely used in nuclear reactor system due to its advantages of compactness. The heat transfer performance of DOTSG is studied in this paper. In order to minimize the DOTSG volume and reduce the pressure drop of coolant, the pitch of inner helical tube is optimized with Pontryagin Maximum Principle (PMP). The double-tube is divided to three regions according to the coolant phase in secondary side. With given heat transfer load, choosing a combination function of minimum tube length and minimum pressure drop constructed with linear weighted method as objective function, the pitch optimization proceeds from superheated region to boiling region, and then to sub-cooled region in sequence, using Maximum Principle and gradient method. Then the pitch and temperature distribution along the axis is obtained respectively. The results show that the optimal pitch keeps constant along the axial direction in sub-cooled region and superheated region, but varies in boiling region. In boiling region, compared with minimum tube length optimization, the optimal tube length is 6.4% longer while the pressure drop is 36.3% smaller; and compared with minimum pressure drop optimization, the optimal pressure drop is 29.1% larger while the optimal tube length is 4.6% smaller. With the optimal pitch, the temperature distribution is in agreement with the general physic rules, which proves the correctness and the feasibility of the Maximum Principle method used for the structural optimization of DOTSG in this paper.

This content is only available via PDF.
You do not currently have access to this content.