The stator and rotor cans in canned motor reactor coolant pump are assumed to be elastic coaxial cylindrical shells due to their particular geometric structures in present study. Thin shell structures such as cans are prone to buckling instabilities. Furthermore, a lot of accidents were caused by losing stability. The dynamic behavior of coaxial circular cylindrical shells subjected to axial fluid flow in the annular gap between two shells is investigated in this paper. The outer shell is stiffened by ring-ribs because of its instability easily. The shell is modeled based on Donnell’s shallow theory. The “smeared stiffeners” approach is used for ring-stiffeners. The fluid is assumed to be an incompressible ideal fluid and the potential flow theory is employed to describe shell-fluid interaction. Numerical analyses are conducted by means of energy variation to obtain the critical flow velocity of losing stability with aid of Hamilton principle. This study shows effects of geometrical parameters on stability of shells. The size and number of ring-stiffeners on dynamic stability are examined. It is found that stiffeners can vary modes instability and enhance the stability of shells. The flow velocities of losing stability with different boundary conductions can be calculated and compared. The results show clamped shells are more stable than simply supported shells. The results presented are in reasonable agreement with those available in the literature.

This content is only available via PDF.
You do not currently have access to this content.