The active magnetic bearing (AMB) system is a crucial part in the helium circulator system of the 10MW high temperature gas-cooled reactor (HTR-10). Though the AMB has been widely used in industrial fields, it is still limited in the research of the dynamic behavior of AMB’s vertical arranged rotor with axial magnetic load during its drop process. This paper establishes the dynamic model of such drop process by Matlab. Meanwhile using the Hertz contact theory establishes the contact model of different configurations. Analyze the axial friction between the rotor and thrust interface of the inner ring of Auxiliary Bearing System (ABS). Besides, the numerical model is verified by the drop experiment with the axial magnetic force. Moreover, this paper analyzes the influence of the rotor’s drop rotational frequency and the axial bracing features including stiffness and damping on the dynamic behavior during vertical arranged rotor’s drop process. Moreover, the paper provides the optimal axial stiffness and damping for the ABS satisfying the experimental conditions so as to reduce the contact force. Such results provide important references to the design of the ABS with a vertical arranged rotor and its application in HTR-10 and High Temperature Reactor-Pebblebed Modules (HTR-PM).

This content is only available via PDF.
You do not currently have access to this content.