The present study was intended to examine how the condensation heat transfer, especially the dropwise condensation, was affected by modifying the surface nature. In the present study, condensation heat transfer experiments for steam were performed by using mirror-finished copper surface and some very thin metal-film surfaces by using sputtering on mirror-finished copper block. That is, the effects on pattern of condensation heat transfer, i.e., dropwise or film-wise condensation, of metal-sputtered surfaces were examined experimentally and qualitatively. The present experimental results showed that the condensation on sputtered metal surfaces of Copper (Cu), Chromium (Cr) and Lead (Pb), became dropwise condensation. The heat transfer coefficients were ten times higher than the Nusselt equation. The condensation on sputtered metal surface of Titanium (Ti) became filmwise condensation. High contact angle was trended to be dropwise condensation on very thin metal-film surfaces by using sputtering.

This content is only available via PDF.
You do not currently have access to this content.