Double ended break of direct vessel injection line (DEDVI) is the most typical small-break lost of coolant accident (LOCA) in AP 1000 nuclear power plant. This study simulated the DEDVI (without actuation of automatic depressurization system 1–3 stage valves, accumulators and passive residual heat removal heat exchanger) beyond design basis accident (BDBA) to validate the safety capability of AP1000 under such conditions. The results show that the core will be uncovered for about 863 seconds and then recovered by water after gravity injection from IRWST into the pressure vessel. The peak cladding temperature (PCT) goes up to 838.08°C, much lower than the limiting value 1204°C. This study confirms that in the DEDVI beyond design basis accident, the passive core cooling system (PXS) can effectually cool the core and preserve it integrate, and ensure the safety of AP 1000 nuclear power plant.
Skip Nav Destination
2013 21st International Conference on Nuclear Engineering
July 29–August 2, 2013
Chengdu, China
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5583-6
PROCEEDINGS PAPER
The Analysis of AP1000 Beyond Design Basis DEDVI Accident
Sheng Zhu
Sheng Zhu
ShangHai Nuclear Engineering Research & Design Institute, ShangHai, China
Search for other works by this author on:
Sheng Zhu
ShangHai Nuclear Engineering Research & Design Institute, ShangHai, China
Paper No:
ICONE21-15140, V006T15A002; 7 pages
Published Online:
February 7, 2014
Citation
Zhu, S. "The Analysis of AP1000 Beyond Design Basis DEDVI Accident." Proceedings of the 2013 21st International Conference on Nuclear Engineering. Volume 6: Beyond Design Basis Events; Student Paper Competition. Chengdu, China. July 29–August 2, 2013. V006T15A002. ASME. https://doi.org/10.1115/ICONE21-15140
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Low-Power and Shut-Down Condition Medium-Break Loss-of-Coolant Accident Success Criterion Analysis for a Typical Three-Loop Nuclear Power Plant
ASME J of Nuclear Rad Sci (October,2016)
External Hazard Coinciding With Small Break LOCA—Thermohydraulic Calculation With System Code ATHLET
ASME J of Nuclear Rad Sci (April,2020)
Thermal Hydraulic Safety Assessment of LLCB Test Blanket System in ITER Using Modified relap/scdapsim/mod4.0 Code
ASME J of Nuclear Rad Sci (April,2018)
Related Chapters
Development of Nuclear Boiler and Pressure Vessels in Taiwan
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 3, Third Edition
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Application of Probabilistic Methods for the Evaluation of Deterministic Deviations from Technical Specifications (PSAM-0277)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)