Condenser is one of the key components in nuclear power plant with pressurized water reactor. It is important to control the dimension and weight in the design of condenser through optimization techniques. In this paper, a mathematic model of a two pass condenser is set up for Qinshan I condenser. Some modifications are made based on the original multi-objective algorithm, and the comparison between modified algorithm and the original one is conducted. Furthermore, the multi-objective optimization design of the condenser, taking minimization of the coolant flow-rate and net weight as objectives, is carried out considering thermohydraulic and geometric constraints through hybrid Pareto-sorting multi-objective genetic algorithm (HPSMOGA). The sensitivities of some parameters, which may influence the coolant flow-rate and the net weight of condenser, are also analyzed. The results show that the mathematical model is agreeable for the condenser. it is also shown that the proposed multi-objective optimal method is more effective in searching non-dominated solutions. the sensitivity analysis show that the tube outer diameter, tube pitch, coolant velocity and coolant temperature rising influence the coolant flow-rate and net weight of the condenser more than other variables. The corresponding results would provide guidance in the engineering design of this type of condenser.

This content is only available via PDF.
You do not currently have access to this content.