The cracked control rods shafts found in two Swedish NPPs were subjected to thermal fatigue due to mixing of cold purge flow with hot bypass water in the upper part of the top tube on which the control rod guide tubes rests. The interaction between the jets formed at the bypass water inlets is the main source of oscillation resulting in low frequency downward motion of hot bypass water into the cold purge flow. This ultimately causes thermal fatigue in the control rod shaft in the region below the four lower bypass water inlets.
The transient analyses shown in this report were done to further investigate this oscillating phenomenon and compare to experimental measurements of water temperatures inside the control rod guide tube. The simulated results show good agreement with experimental data regarding all important variables for the estimation of thermal fatigue such as peak-to-peak temperature range, frequency of oscillation and duration of the temperature peaks.
The results presented in this report show that CFD using LES methodology and the open source toolbox OpenFOAM is a viable tool for predicting complex turbulent mixing flows and thermal loads.