The heat transfer of water in a vertically heated tube at 24.52 MPa is numerically simulated by computational fluid dynamics software of FLUENT. The IAPWS-IF97 formulation is applied to obtain the water properties, which vary substantially at supercritical condition. The two-dimensional axi-symmetric model using RNG k-ε turbulence model with enhanced wall treatment gives fine prediction of wall temperature and heat transfer coefficient. The mesh size near the wall adapted smaller when at high heat fluxes for the accuracy of computed results. The wall heat fluxes were set to be 233, 698, 930 and 1100 kW/m2 to match the simulation with experiment performed by Yamagata. It is found that k-ε turbulence model with enhanced wall treatment can give outstanding prediction of heat transfer enhancement and heat transfer deterioration. The heat transfer coefficient value reaches a maximum near the pseudocritical point and it decreases with increase of heat flux.

This content is only available via PDF.
You do not currently have access to this content.